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In this paper we study synchronization in linearly coupled time-delayed systems. We first consider coupled
nonidentical Ikeda systems with a square wave coupling rate. Using the theory of the time-delayed equation,
we derive less restrictive synchronization conditions than those resulting from the Krasovskii-Lyapunov theory
[Yang Kuang, Delay Differential Equations (Academic Press, New York, 1993)]. Then we consider a wide
class of nonlinear nonidentical time-delayed systems. We also propose less restrictive synchronization condi-

tions in an approximative sense, even if the coefficients in the linear time-delayed equation on the synchroni-
zation error are time dependent. Theoretical analysis and numerical simulations fully verify our main results.
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I. INTRODUCTION

Time-delayed systems are ubiquitous in nature, technol-
ogy, and society because of finite signal transmission times,
switching speeds, and memory effects [1]. It is well known
that dissipative systems with a nonlinear time-delayed feed-
back or memory can produce chaotic dynamics [2,3], and the
dimension of their chaotic attractors can be made arbitrarily
large by increasing their delay time sufficiently [4]. Recently,
the synchronization of the time-delayed systems has attracted
much attention [5-12]. Complete synchronization [7], phase
synchronization [8], anticipating synchronization [9], and
generalized synchronization [10] are considered in the time-
delayed coupled systems.

From recent works [1,6,9,11,12], the Krasovskii-
Lyapunov theory [13] is useful for discussing the synchroni-
zation in the coupled time-delayed systems. According to
this theory, some sufficient conditions are given to ensure
synchronization in the coupled time-delayed systems
[1,6,9,11]. However, these conditions are not valid for the
general case where the linear time-delayed equation on the
synchronization error are time varying; especially the coeffi-
cients in this equation are time dependent. This has been
already shown in detail by Zhou er al. [12]. Therefore, it is
necessary and important to propose the synchronization con-
ditions for the above case.

In this paper we also consider the synchronization in the
linearly coupled time-delayed systems. Here we study two
cases of the coupled time-delayed systems. The first case is
the coupled nonidentical Ikeda systems with a square wave
coupling rate. Using the stability theory of the time-delayed
equation, we can derive less restrictive synchronization con-
ditions than those resulting from the Krasovskii-Lyapunov
theory. The second case is a wide class of nonlinear noniden-
tical time-delayed systems. In an approximative sense, we
also propose less restrictive synchronization conditions even
if the coefficients in the linear time-delayed equation on the
synchronization error are time dependent.

II. SYNCHRONIZATION IN THE COUPLED
IKEDA SYSTEMS

First we analyze two nonidentical linearly coupled Ikeda
systems
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dx

_— = + 1 - , 1

" ax +my sin x(t - 7;) (1)
dy .
E=—ay+mzsmy(t—Tz)+K(x—y), ()

where x is the phase lag of the electric field across the reso-
nator, « is the relaxation coefficient, m, , are the laser inten-
sities injected into the systems, 7, , are the round-trip times
of the light in the resonators or feedback delay times in the
coupled systems, and K is the coupling rate between the
drive and response systems [10]. The Ikeda model was intro-
duced to describe the dynamics of an optical bistable reso-
nator and is well known for delay-induced chaotic behavior
[9,11].

Here we choose the coupling rate K as a square wave
coupling, denoted by the following sequence;

{(t0. K1), (11.K), (1, K3),(13.K4), ... }, (3)

where #;=t+(j—1)7, is the switching instant, the coupling
rate K,;_1=k; and K,;=k, for all j=1; k; and k, are different
values. Within the interval [¢;_,,), the coupled Ikeda sys-
tems (1) and (2) become

dx

—=—ax+msinx(t—1),
ar 1 1

d
d—);:— y +my sin y(t—7) + Kj(x—y).

When the time delays 7, =7,, one necessary condition for
complete synchronization in the coupled Tkeda systems (1)
and (2) is m;=m, [10]. The dynamics of the error A=x—y is
given by

%z_(a+K)A—ml cos x(t—1)A(t— 7). (4)

It is obvious that A=0 is a solution of system (4).

To study the stability of system (4), one can design a
Krasovskii-Lyapunov function as V(t):%Az(t)+ wf ngAz(t
+60)d6, where w>0 is an arbitrary positive parameter.
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The main purpose of the Krasovskii-Lyapunov theory is to
find the condition for the negativeness of ‘2—‘; when the syn-
chronization error A is not zero. Since r(f)=a+K and s(¢)
=-m, cos x(r— 1) in system (4) are time varying, a sufficient
condition for complete synchronization is a+K> |m;]
=s(t)| for all time [1,6,9,11,12]. But this condition cannot
be applied to the general case where r(z) and s(r) are time
varying, especially s(¢) is not bounded for all time. Even for
the square wave coupling rate, the above condition may not
ensure complete synchronization. The main reason is that the
parameter u in the Krasovskii-Lyapunov function V(¢) is
supposed to be time invariant. However, when r(r) and s(z)
in the general case are time dependent, the parameter w
should be also time varying [12].

Here we propose a less restrictive synchronization condi-
tion using the stability theory of the time-delayed equation.
Defining a positive-defined function V(£)=A%(z), we get

dv
o < -2(a+K)V+2|m,||AA(t - 7)]

$—2<a+K—@>V+|m1|V(t—TI). (5)

Integrating the above inequality, we have

V(t) < Vo + ft |:—2<a+K— @)v(s) + |my|V(s - T]):|ds,

)

where V,, is an initial condition of V(). From the comparison
theorem of the delayed equation [14], the solution V(z) sat-
isfies

V() <T(), (6)

where I'(?) is the maximal solution of the following integral
equation:

t
I(1)=Vy+ f [— 2(a+ K- |";—1|)F(s) + [y (s = Tl)]ds,
)
or equivalently,
dr |
E=—2(a+1<—|m1|)r+7'F(t—rl), (7)

with the same initial condition V,. If we prove that
lim,_.I'(r)=0, we get lim,_..V(£)=0, which further results in
the limit lim,_,,A(z)=0. From Ref. [15], the stability of sys-
tem (7) is equivalent to the stability of

dar
—1:{—2<a+K—|m_]|)+ﬁ|ml|:|Fl’ ®)
dt 2

where d=exp(jf),0e[0,27],j=\-1. From the square
wave coupling rate (3), if time ¢ belongs to the interval
[tj—lstj)’ we get
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ool [ [0 o] -

-1

. my|
Xexp -2 a+K1—T + Nmy| |ds ¢V,
)
- ' ||
< exp -2 a+Kj—7 +|my| |ds ¢
11

i m|
Xexp{f {—2<a+K1—T>+|ml|]ds}V0
:exp{th [-(a+K- |m1|)]ds}V0.

Hence we obtain a sufficient condition for complete synchro-
nization in the coupled Ikeda systems (1) and (2),

I (0)]| =

f [ (a+K—|m|)]dr=—co. )

If this condition is satisfied, we get lim,_.I";(r)=0, which
also means lim,_.I'(r)=0. However, this condition does not
require that the derivative of a positive-defined function V is
negative for all time when the synchronization error is not
zero [1,6,9,11,12]. It aims to make lim,_,..I'(r)=0, which also
leads to lim,_,,,V(z)=0. Further, condition (9) is less restric-
tive than the condition of a+K>|m,| for all time [1,6,9,11].
For the square wave coupling (3), the condition for complete
synchronization is —(a+k;—|m,|) 7,— (a+ky—|m;|)7,<0 dur-
ing one period. Complete synchronization in the coupled
Ikeda systems (1) and (2) can also be ensured even if the
coupling rate k, (or k,) could not satisfy a+k,;>|m,| (or a
+ky >[my).

When the time delays 7| # 7,, complete synchronization is
not possible. But we can analyze the condition for general-
ized synchronization in the coupled Ikeda systems (1) and
(2) based on the auxiliary approach [16]. Therefore, we
should consider complete synchronization between the fol-
lowing Ikeda systems:

d

d—);z— ay +mysiny(t— 1)+ K(x-y), (10)
dz .
Z:—az+m251nz(t—72)+K(x—z). (11)

Applying the above approach for the case of complete syn-
chronization, we get a sufficient condition for generalized
synchronization in the coupled Ikeda systems (1) and (2) as
follows:

f [ (a4 K= o)) Y == o, (12)

where the coupling rate K is a square wave signal (3). This
condition is also less restrictive than the condition of a+K
> |my,| for all time [1,6,9,11].
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III. SYNCHRONIZATION IN THE NONLINEAR
TIME-DELAYED SYSTEMS

Now we generalize the above approach to a wide class of
nonlinear nonidentical time-delayed systems. Consider a
general form of one-way coupled scalar time-delayed sys-
tems,

dx

Z=F(p,x,x71), (13)
dy
o = F@y.yz) + KGx-y), (14)

where K is the coupling rate, and p and ¢ are the parameters
for the drive system and the response system, respectively.

When the delays 7;=7, and the parameters p=q, we con-
sider complete synchronization in the coupled systems (13)
and (14). A small deviation A=x—y is governed by the lin-
earized time-delayed equation

%:—r(r)A+s(t)A(t— ), (15)
where r(f)=(K-3d,)F(p ,x,le) and s(7)= dy_ F(p ,x,le).

Similarly, one can also design a Kraslovskii-Lyapunov
function as V(t):%Az(t)+,unglA2(t+ 0)d6 to study the sta-
bility of system (15). Further, a sufficient condition for com-
plete synchronization is r(f) >|s(z)| for all time [1,6,9,11,12].
However, this condition cannot be applied to the general case
where r(f) and s(7) are time varying [12]. Here we give one
sufficient synchronization condition in an approximative
sense.

We first segment the time interval [7y,%) into [7,,)
=Uj=[t5,1), where 7,>0 is sufficiently small, #;=¢,+ 7,
and 7 is a multiple of 7,. If 7, is sufficiently small, the
solution x(#) of the drive system (13) can be approximated by
x(t;) within the interval [;_;,z;), which further results in the
approximation of r(z),s() by r(z;),s(t;), respectively. There-
fore, within the interval [#;_,,¢;), system (15) can be approxi-
mated by

%z—r’(t)ms’(tm(t—ﬂ), (16)

where 7' (1)=r(t;) and s’ (1)=s(t;). In fact, the above approxi-
mation of system (15) can be regarded as the following se-
quence:

{(to.{s" (t), " (0)}), (115" (12), 7 (12)}),
(t{s"(13),r" (13)}), ... }. (17)

Applying the approach for the case of the coupled Ikeda
systems, we can derive the stability condition for the ap-
proximation system (16) as follows:

f =10 - |5 ()T = -, (1)

where r'(r),s'(¢) satisfy the sequence (17). As 7, tends to
zero, the stability of system (16) becomes the stability of
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system (15). Therefore, if 7, is sufficiently small, condition
(18) can be approximately regarded as a condition for com-
plete synchronization of the coupled systems (13) and (14).
When the delays 7, # 75, we can also study generalized
synchronization in the coupled systems (13) and (14). From
the auxiliary approach [16], we should consider complete
synchronization between the following systems:

dy
= F@y.yz) + Ko=), (19)
d
= F@,) + K(x=2). (20)

The small deviation A’=y—z is governed by

dA’

I:—r(r)A’+s(t)A’(t—72), (21)
where  r(t)=(K-3d,)F(q,x,x,) and s(t)=d, F(q,x,x;).

72

Similarly, we segment the time interval [z,,%) into [#,,)
=U;=4[t;_1.1)), where 7, is sufficiently small, and 7, is the
multiple of 7,. Therefore, system (21) can be approximated
sufficiently by

!

%;z—WMA+M@A%rwa, (22)

in which r'(t)=r(t;) and s'(t)=s(z;}) within the interval
[#-1.t). We also derive the stability condition for system
(22)

f =10 - s (T = -, 23)

where r'(z),s'(r) satisfy the sequence (17). If 7, is suffi-
ciently small, condition (23) can be also approximately re-
garded as a condition for generalized synchronization of the
coupled systems (13) and (14).

From the above analysis, if 7, approaches zero,
x(#;),r'(2),s" (1) approach x(¢),r(t),s(t), respectively, and
system (16) [or system (22)] can also approximate system
(15) [or system (21)]. If 7, tends to zero, conditions (18) and
(23) become

f = 1) = |s( Tt = = =, o4)

where r(t)=(K—(?x)F(p,x,xTI) and s(1)=4, F(p,x,xfl) for
!
complete synchronization, and r(r)=(K-4,)F (q,x,x,z) and
s(t)=d, F (q,x,xrz) for generalized synchronization. Hence
)

condition (24) can be considered as a sufficient synchroniza-
tion condition in an approximative sense.

IV. NUMERICAL SIMULATIONS

We choose two typical examples to confirm our main re-
sults. One is the coupled nonidentical Ikeda systems; the
other is the coupled nonidentical Mackey-Glass systems [2].
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FIG. 1. Complete synchronization and generalized synchroniza-
tion in the coupled Ikeda systems (1) and (2). (a) Complete syn-
chronization for 7j=m=1, a=5, m;=m,=20, and the square wave
coupling rate {(0, 0),(2, 40),(4, 0),(6, 40),...}. (b) Generalized syn-
chronization for 7;=1, 7,=1.2 [or complete synchronization in sys-
tems (10) and (11)]. All the other parameters have the same values
as those in Fig. 1(a). (c) Complete synchronization in the coupled
Ikeda systems (1) and (2) where the coupling rate K(f)=-—«
+2m;|cos x(t—7,)|. All the other parameters have the same values
as those in Fig. 1(a). (d) Generalized synchronization in the coupled
Ikeda systems (1) and (2) where the coupling rate K(f)=-—«
+2my,|cos x(t—7,)| [or complete synchronization in the systems (10)
and (11)]. All the other parameters have the same values as those in
Fig. 1(b).

Note that all the results are simulated using the DDE23 pro-
gram [17] in MATLAB 7.

Example 1. The coupled nonidentical Ikeda systems (1)
and (2). We first choose a square wave coupling rate K as the
sequence {(0, 0),(2, 40),(4, 0),(6, 40),...}. Obviously, within
the intervals [0, 2),[4, 6),..., there exists no coupling
(namely, the coupling rate K=0), which means that «
> |m,| for complete synchronization and a>|m,| for gener-
alized synchronization are not satisfied within these inter-
vals. Hence conditions resulting from the Krasovskii-
Lyapunov theory cannot ensure the synchronization.
However, after a simple computation, condition (9) for com-
plete synchronization and condition (12) for generalized syn-
chronization are satisfied. Figure 1(a) shows complete syn-
chronization for m=n=1, a=5, and m;=m,=20. Figure
1(b) shows generalized synchronization in the coupled Ikeda
systems (1) and (2) for 7,=1, 7,=1.2.

For the general case of the coupling rate K(¢), we still
derive the approximated synchronization condition (24)
where r(f)=a+K(r) and s(t)=—m, cos x(t— 1) for complete
synchronization, and r(f)=a+K(z) and s(f)=—m, cos x(t
—7,) for generalized synchronization. For complete synchro-
nization, we choose K(t)=—a+2m;|cos x(t—,)|. Hence r(z)
=2m,|cos x(t—7))| =|s(t)|=m|cos x(t—7;)|. From Refs.
[1,6,9,11,12], complete synchronization cannot be ensured
by the condition of r(f)>m,;=|s(¢)| (or r(¢)>|s(z)|) for all
time. However, we get ff;{—[r(t)—|s(t)|]}dt=f;;[—m1|cos x(t

PHYSICAL REVIEW E 76, 036212 (2007)
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FIG. 2. Complete synchronization and generalized synchroniza-
tion in the coupled Mackey-Glass systems (25) and (26). (a) Com-
plete synchronization for ay=a,=2, b;=b,=10, c¢;=c,=1, 71=7
=10. (b) Generalized synchronization for a,=a,=2, b;=b,=10,
c¢;=c,=1, 7=10, 7,=12 [or complete synchronization in the sys-
tems %=—02y+a2y72/(1+yl;§)+K(x—y) and %z—czz+a2z72/(1
+zl:_§)+K(x—z)].

—1)|]dt=—= due to the chaotic nature of state x. Figure 1(c)
shows the simulation result for complete synchronization.
For generalized synchronization, we choose K(f)=-«
+2my|cos x(t—7,)|.  Hence  r(t)=2my|cos x(t—7,)|=|s(z)|
=my|cos x(t—7,)|. Since the condition of r(¢)>m,=|s(t)| [or
r(t)>|s(#)|] for all time is not satisfied, generalized synchro-
nization cannot be ensured by synchronization conditions
[1,6,9,11,12]. However, we still have f:{—[r(t)—|s(t)|]}dt
=f:)[—m2|cos x(t—,)|]dt=—oc. Figure 1(d) shows the simu-
lation result for generalized synchronization.

Example 2. The coupled Mackey-Glass systems. The
coupled nonidentical Mackey-Glass systems [2,6] are

dx
E=—01x+a1x71/(1 +x};11), (25)

dy b
E=—Czy+azy72/(1+y7§)+K(X—)’)- (26)

Initially the Mackey-Glass system has been introduced as a
model of blood generation for patients with leukemia. Later
this model became popular in chaos theory as a model for
producing high dimensional chaos to test various methods of
chaotic time series analysis, controlling chaos, etc.

We consider the synchronization in the coupled systems
(25) and (26), where the square wave coupling rate K is
denoted by the sequence {(0,-6),(0.2,30),(0.4,
-6),(0.6,30),...}. In this case we set a;=a,=2, b;=b,=10,
c1=c,=1, ;;=7,=10 for complete synchronization, and 7,
=10, 7,=12 for generalized synchronization. Here r(r)=K
+c; is a special kind of time-varying coupling rates, s(r)
:ﬁl[alxﬁ/ (1+xl;|1)] for complete synchronization and s(z)
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= %[azxﬁ/ (1 +xi§)] for generalized synchronization are also
time varying. After a simple computation, we get
|{7X [ayx,/(1+x")]|<a;+5*=12 for any 7>0. Since the
coupling rate K within the intervals [0, 0.2),[0.4, 0.6),..
negative, the condition of r(¢)>m,=|s(t)| (or r(t)>

for all time is not satisfied [1,6,9,11,12]. Therefore we should

verify the satisfaction of condition (24) for complete syn-
chronization and enera]lzed synchronization. It is easy to

verify that fw{ K+ei— |5 f(le) ]}dt——oo and [ { [K
+o— |3 f(x72)|]}dt——00 Hence complete synchronization

(24) for 7y=7, and generalized synchronization (24) for 7|
# 7, in the coupled Mackey-Glass systems (25) and (26) are
ensured.

The simulation results are plotted in Fig. 2. Figure 2(a)
shows complete synchronization in the coupled nonidentical
Mackey-Glass systems (25) and (26) when a,=a,=2, b,
=b,=10, ¢;=c,=1, and 7,=7,=10. Figure 2(b) shows gen-
eralized synchronization in the coupled nonidentical
Mackey-Glass systems (25) and (26) for a,=a,=2, b;=b,
= 10, C1=Cr= 1, T = 10, and = 12.
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V. CONCLUSION

We have studied synchronization in linearly coupled time-
delayed systems. We first consider the coupled nonidentical
Ikeda systems with a square wave coupling rate. We derive
less restrictive synchronization conditions than those result-
ing from the Krasovskii-Lyapunov theory. Then we general-
ize the above approach to a wide class of nonlinear noniden-
tical time-delayed systems. Even if the coefficients in the
linear time-delayed equation on the synchronization error are
time dependent, we also propose less restrictive synchroni-
zation conditions in an approximative sense. Numerical
simulations of the coupled Ikeda systems and the coupled
Mackey-Glass systems fully verify our main results.
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