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In this paper we study synchronization in linearly coupled time-delayed systems. We first consider coupled
nonidentical Ikeda systems with a square wave coupling rate. Using the theory of the time-delayed equation,
we derive less restrictive synchronization conditions than those resulting from the Krasovskii-Lyapunov theory
�Yang Kuang, Delay Differential Equations �Academic Press, New York, 1993��. Then we consider a wide
class of nonlinear nonidentical time-delayed systems. We also propose less restrictive synchronization condi-
tions in an approximative sense, even if the coefficients in the linear time-delayed equation on the synchroni-
zation error are time dependent. Theoretical analysis and numerical simulations fully verify our main results.

DOI: 10.1103/PhysRevE.76.036212 PACS number�s�: 05.45.Xt, 05.45.Vx, 42.55.Px, 42.65.Sf

I. INTRODUCTION

Time-delayed systems are ubiquitous in nature, technol-
ogy, and society because of finite signal transmission times,
switching speeds, and memory effects �1�. It is well known
that dissipative systems with a nonlinear time-delayed feed-
back or memory can produce chaotic dynamics �2,3�, and the
dimension of their chaotic attractors can be made arbitrarily
large by increasing their delay time sufficiently �4�. Recently,
the synchronization of the time-delayed systems has attracted
much attention �5–12�. Complete synchronization �7�, phase
synchronization �8�, anticipating synchronization �9�, and
generalized synchronization �10� are considered in the time-
delayed coupled systems.

From recent works �1,6,9,11,12�, the Krasovskii-
Lyapunov theory �13� is useful for discussing the synchroni-
zation in the coupled time-delayed systems. According to
this theory, some sufficient conditions are given to ensure
synchronization in the coupled time-delayed systems
�1,6,9,11�. However, these conditions are not valid for the
general case where the linear time-delayed equation on the
synchronization error are time varying; especially the coeffi-
cients in this equation are time dependent. This has been
already shown in detail by Zhou et al. �12�. Therefore, it is
necessary and important to propose the synchronization con-
ditions for the above case.

In this paper we also consider the synchronization in the
linearly coupled time-delayed systems. Here we study two
cases of the coupled time-delayed systems. The first case is
the coupled nonidentical Ikeda systems with a square wave
coupling rate. Using the stability theory of the time-delayed
equation, we can derive less restrictive synchronization con-
ditions than those resulting from the Krasovskii-Lyapunov
theory. The second case is a wide class of nonlinear noniden-
tical time-delayed systems. In an approximative sense, we
also propose less restrictive synchronization conditions even
if the coefficients in the linear time-delayed equation on the
synchronization error are time dependent.

II. SYNCHRONIZATION IN THE COUPLED
IKEDA SYSTEMS

First we analyze two nonidentical linearly coupled Ikeda
systems

dx

dt
= − �x + m1 sin x�t − �1� , �1�

dy

dt
= − �y + m2 sin y�t − �2� + K�x − y� , �2�

where x is the phase lag of the electric field across the reso-
nator, � is the relaxation coefficient, m1,2 are the laser inten-
sities injected into the systems, �1,2 are the round-trip times
of the light in the resonators or feedback delay times in the
coupled systems, and K is the coupling rate between the
drive and response systems �10�. The Ikeda model was intro-
duced to describe the dynamics of an optical bistable reso-
nator and is well known for delay-induced chaotic behavior
�9,11�.

Here we choose the coupling rate K as a square wave
coupling, denoted by the following sequence;

��t0,K1�,�t1,K2�,�t2,K3�,�t3,K4�, . . . � , �3�

where tj = t0+ �j−1��s is the switching instant, the coupling
rate K2j−1=k1 and K2j =k2 for all j�1; k1 and k2 are different
values. Within the interval �tj−1 , tj�, the coupled Ikeda sys-
tems �1� and �2� become

dx

dt
= − �x + m1 sin x�t − �1� ,

dy

dt
= − �y + m2 sin y�t − �2� + Kj�x − y� .

When the time delays �1=�2, one necessary condition for
complete synchronization in the coupled Ikeda systems �1�
and �2� is m1=m2 �10�. The dynamics of the error �=x−y is
given by

d�

dt
= − �� + K�� − m1 cos x�t − �1���t − �1� . �4�

It is obvious that �=0 is a solution of system �4�.
To study the stability of system �4�, one can design a

Krasovskii-Lyapunov function as V�t�= 1
2�2�t�+��−�1

0 �2�t
+��d�, where ��0 is an arbitrary positive parameter.
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The main purpose of the Krasovskii-Lyapunov theory is to
find the condition for the negativeness of dV

dt when the syn-
chronization error � is not zero. Since r�t�=�+K and s�t�
=−m1 cos x�t−�1� in system �4� are time varying, a sufficient
condition for complete synchronization is �+K� �m1�
� �s�t�� for all time �1,6,9,11,12�. But this condition cannot
be applied to the general case where r�t� and s�t� are time
varying, especially s�t� is not bounded for all time. Even for
the square wave coupling rate, the above condition may not
ensure complete synchronization. The main reason is that the
parameter � in the Krasovskii-Lyapunov function V�t� is
supposed to be time invariant. However, when r�t� and s�t�
in the general case are time dependent, the parameter �
should be also time varying �12�.

Here we propose a less restrictive synchronization condi-
tion using the stability theory of the time-delayed equation.
Defining a positive-defined function V�t�=�2�t�, we get

dV

dt
� − 2�� + K�V + 2�m1�����t − �1��

� − 2	� + K −
�m1�

2

V + �m1�V�t − �1� . �5�

Integrating the above inequality, we have

V�t� � V0 + �
t0

t �− 2	� + K −
�m1�

2

V�s� + �m1�V�s − �1�
ds ,

where V0 is an initial condition of V�t�. From the comparison
theorem of the delayed equation �14�, the solution V�t� sat-
isfies

V�t� � 	�t� , �6�

where 	�t� is the maximal solution of the following integral
equation:

	�t� = V0 + �
t0

t �− 2	� + K −
�m1�

2

	�s� + �m1�	�s − �1�
ds ,

or equivalently,

d	

dt
= − 2�� + K − �m1��	 +

�m1�
2

	�t − �1� , �7�

with the same initial condition V0. If we prove that
limt→
	�t�=0, we get limt→
V�t�=0, which further results in
the limit limt→
��t�=0. From Ref. �15�, the stability of sys-
tem �7� is equivalent to the stability of

d	1

dt
= �− 2	� + K −

�m1�
2

 + ��m1�
	1, �8�

where �=exp�j�� ,�� �0,2�� , j=�−1. From the square
wave coupling rate �3�, if time t belongs to the interval
�tj−1 , tj�, we get

�	1�t�� = �exp��
tj−1

t �− 2	� + Kj −
�m1�

2

 + ��m1�
ds�¯


exp��
t0

t1 �− 2	� + K1 −
�m1�

2

 + ��m1�
ds�V0�

� exp��
tj−1

t �− 2	� + Kj −
�m1�

2

 + �m1�
ds�¯


exp��
t0

t1 �− 2	� + K1 −
�m1�

2

 + �m1�
ds�V0

= exp�2�
t0

t

�− �� + K − �m1���ds�V0.

Hence we obtain a sufficient condition for complete synchro-
nization in the coupled Ikeda systems �1� and �2�,

�
t0




�− �� + K − �m1���dt = − 
 . �9�

If this condition is satisfied, we get limt→
	1�t�=0, which
also means limt→
	�t�=0. However, this condition does not
require that the derivative of a positive-defined function V is
negative for all time when the synchronization error is not
zero �1,6,9,11,12�. It aims to make limt→
	�t�=0, which also
leads to limt→
V�t�=0. Further, condition �9� is less restric-
tive than the condition of �+K� �m1� for all time �1,6,9,11�.
For the square wave coupling �3�, the condition for complete
synchronization is −��+k1− �m1���s− ��+k2− �m1���s�0 dur-
ing one period. Complete synchronization in the coupled
Ikeda systems �1� and �2� can also be ensured even if the
coupling rate k1 �or k2� could not satisfy �+k1� �m1� �or �
+k2� �m1��.

When the time delays �1��2, complete synchronization is
not possible. But we can analyze the condition for general-
ized synchronization in the coupled Ikeda systems �1� and
�2� based on the auxiliary approach �16�. Therefore, we
should consider complete synchronization between the fol-
lowing Ikeda systems:

dy

dt
= − �y + m2 sin y�t − �2� + K�x − y� , �10�

dz

dt
= − �z + m2 sin z�t − �2� + K�x − z� . �11�

Applying the above approach for the case of complete syn-
chronization, we get a sufficient condition for generalized
synchronization in the coupled Ikeda systems �1� and �2� as
follows:

�
t0




�− �� + K − �m2���dt = − 
 , �12�

where the coupling rate K is a square wave signal �3�. This
condition is also less restrictive than the condition of �+K
� �m2� for all time �1,6,9,11�.
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III. SYNCHRONIZATION IN THE NONLINEAR
TIME-DELAYED SYSTEMS

Now we generalize the above approach to a wide class of
nonlinear nonidentical time-delayed systems. Consider a
general form of one-way coupled scalar time-delayed sys-
tems,

dx

dt
= F�p,x,x�1

� , �13�

dy

dt
= F�q,y,y�2

� + K�x − y� , �14�

where K is the coupling rate, and p and q are the parameters
for the drive system and the response system, respectively.

When the delays �1=�2 and the parameters p=q, we con-
sider complete synchronization in the coupled systems �13�
and �14�. A small deviation �=x−y is governed by the lin-
earized time-delayed equation

d�

dt
= − r�t�� + s�t���t − �1� , �15�

where r�t�= �K−�x�F�p ,x ,x�1
� and s�t�=�x�1

F�p ,x ,x�1
�.

Similarly, one can also design a Krasovskii-Lyapunov
function as V�t�= 1

2�2�t�+��−�1

0 �2�t+��d� to study the sta-
bility of system �15�. Further, a sufficient condition for com-
plete synchronization is r�t�� �s�t�� for all time �1,6,9,11,12�.
However, this condition cannot be applied to the general case
where r�t� and s�t� are time varying �12�. Here we give one
sufficient synchronization condition in an approximative
sense.

We first segment the time interval �t0 ,
� into �t0 ,
�
=� j�1�tj−1 , tj�, where �0�0 is sufficiently small, tj = t0+ j�0,
and �1 is a multiple of �0. If �0 is sufficiently small, the
solution x�t� of the drive system �13� can be approximated by
x�tj� within the interval �tj−1 , tj�, which further results in the
approximation of r�t� ,s�t� by r�tj� ,s�tj�, respectively. There-
fore, within the interval �tj−1 , tj�, system �15� can be approxi-
mated by

d�

dt
= − r��t�� + s��t���t − �1� , �16�

where r��t�=r�tj� and s��t�=s�tj�. In fact, the above approxi-
mation of system �15� can be regarded as the following se-
quence:

�„t0,�s��t1�,r��t1��…,„t1,�s��t2�,r��t2��…,

„t2,�s��t3�,r��t3��…, . . . � . �17�

Applying the approach for the case of the coupled Ikeda
systems, we can derive the stability condition for the ap-
proximation system �16� as follows:

�
t0




�− �r��t� − �s��t����dt = − 
 , �18�

where r��t� ,s��t� satisfy the sequence �17�. As �0 tends to
zero, the stability of system �16� becomes the stability of

system �15�. Therefore, if �0 is sufficiently small, condition
�18� can be approximately regarded as a condition for com-
plete synchronization of the coupled systems �13� and �14�.

When the delays �1��2, we can also study generalized
synchronization in the coupled systems �13� and �14�. From
the auxiliary approach �16�, we should consider complete
synchronization between the following systems:

dy

dt
= F�q,y,y�2

� + K�x − y� , �19�

dz

dt
= F�q,z,z�2

� + K�x − z� . �20�

The small deviation ��=y−z is governed by

d��

dt
= − r�t��� + s�t����t − �2� , �21�

where r�t�= �K−�x�F�q ,x ,x�2
� and s�t�=�x�2

F�q ,x ,x�2
�.

Similarly, we segment the time interval �t0 ,
� into �t0 ,
�
=� j�1�tj−1 , tj�, where �0 is sufficiently small, and �2 is the
multiple of �0. Therefore, system �21� can be approximated
sufficiently by

d��

dt
= − r��t�� + s��t����t − �2� , �22�

in which r��t�=r�tj� and s��t�=s�tj� within the interval
�tj−1 , tj�. We also derive the stability condition for system
�22�

�
t0




�− �r��t� − �s��t����dt = − 
 , �23�

where r��t� ,s��t� satisfy the sequence �17�. If �0 is suffi-
ciently small, condition �23� can be also approximately re-
garded as a condition for generalized synchronization of the
coupled systems �13� and �14�.

From the above analysis, if �0 approaches zero,
x�tj� ,r��t� ,s��t� approach x�t� ,r�t� ,s�t�, respectively, and
system �16� �or system �22�� can also approximate system
�15� �or system �21��. If �0 tends to zero, conditions �18� and
�23� become

�
t0




�− �r�t� − �s�t����dt = − 
 , �24�

where r�t�= �K−�x�F�p ,x ,x�1
� and s�t�=�x�1

F�p ,x ,x�1
� for

complete synchronization, and r�t�= �K−�x�F�q ,x ,x�2
� and

s�t�=�x�2
F�q ,x ,x�2

� for generalized synchronization. Hence

condition �24� can be considered as a sufficient synchroniza-
tion condition in an approximative sense.

IV. NUMERICAL SIMULATIONS

We choose two typical examples to confirm our main re-
sults. One is the coupled nonidentical Ikeda systems; the
other is the coupled nonidentical Mackey-Glass systems �2�.
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Note that all the results are simulated using the DDE23 pro-
gram �17� in MATLAB 7.

Example 1. The coupled nonidentical Ikeda systems (1)
and (2). We first choose a square wave coupling rate K as the
sequence ��0, 0�,�2, 40�,�4, 0�,�6, 40�,…�. Obviously, within
the intervals �0, 2�,�4, 6�,…, there exists no coupling
�namely, the coupling rate K=0�, which means that �
� �m1� for complete synchronization and �� �m2� for gener-
alized synchronization are not satisfied within these inter-
vals. Hence conditions resulting from the Krasovskii-
Lyapunov theory cannot ensure the synchronization.
However, after a simple computation, condition �9� for com-
plete synchronization and condition �12� for generalized syn-
chronization are satisfied. Figure 1�a� shows complete syn-
chronization for �1=�2=1, �=5, and m1=m2=20. Figure
1�b� shows generalized synchronization in the coupled Ikeda
systems �1� and �2� for �1=1, �2=1.2.

For the general case of the coupling rate K�t�, we still
derive the approximated synchronization condition �24�
where r�t�=�+K�t� and s�t�=−m1 cos x�t−�1� for complete
synchronization, and r�t�=�+K�t� and s�t�=−m2 cos x�t
−�2� for generalized synchronization. For complete synchro-
nization, we choose K�t�=−�+2m1�cos x�t−�1��. Hence r�t�
=2m1�cos x�t−�1��� �s�t��=m1�cos x�t−�1��. From Refs.
�1,6,9,11,12�, complete synchronization cannot be ensured
by the condition of r�t��m1� �s�t�� �or r�t�� �s�t��� for all
time. However, we get �t0


�−�r�t�− �s�t����dt=�t0

�−m1�cos x�t

−�1���dt=−
 due to the chaotic nature of state x. Figure 1�c�
shows the simulation result for complete synchronization.
For generalized synchronization, we choose K�t�=−�
+2m2�cos x�t−�2��. Hence r�t�=2m2�cos x�t−�2��� �s�t��
=m2�cos x�t−�2��. Since the condition of r�t��m2� �s�t�� �or
r�t�� �s�t��� for all time is not satisfied, generalized synchro-
nization cannot be ensured by synchronization conditions
�1,6,9,11,12�. However, we still have �t0


�−�r�t�− �s�t����dt
=�t0


�−m2�cos x�t−�2���dt=−
. Figure 1�d� shows the simu-
lation result for generalized synchronization.

Example 2. The coupled Mackey-Glass systems. The
coupled nonidentical Mackey-Glass systems �2,6� are

dx

dt
= − c1x + a1x�1

/�1 + x�1

b1� , �25�

dy

dt
= − c2y + a2y�2

/�1 + y�2

b2� + K�x − y� . �26�

Initially the Mackey-Glass system has been introduced as a
model of blood generation for patients with leukemia. Later
this model became popular in chaos theory as a model for
producing high dimensional chaos to test various methods of
chaotic time series analysis, controlling chaos, etc.

We consider the synchronization in the coupled systems
�25� and �26�, where the square wave coupling rate K is
denoted by the sequence ��0,−6� , �0.2,30� , �0.4,
−6� , �0.6,30� , . . . �. In this case we set a1=a2=2, b1=b2=10,
c1=c2=1, �1=�2=10 for complete synchronization, and �1
=10, �2=12 for generalized synchronization. Here r�t�=K
+c1 is a special kind of time-varying coupling rates, s�t�
= �

�x�1

�a1x�1
/ �1+x�1

b1�� for complete synchronization and s�t�

0 20 40 60 80 100
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1.5

x,
y

(a)

t

t
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0

0.5

1

1.5
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y,
z

x y

y z

FIG. 2. Complete synchronization and generalized synchroniza-
tion in the coupled Mackey-Glass systems �25� and �26�. �a� Com-
plete synchronization for a1=a2=2, b1=b2=10, c1=c2=1, �1=�2

=10. �b� Generalized synchronization for a1=a2=2, b1=b2=10,
c1=c2=1, �1=10, �2=12 �or complete synchronization in the sys-
tems dy

dt =−c2y+a2y�2
/ �1+y�2

b2�+K�x−y� and dz
dt =−c2z+a2z�2

/ �1
+z�2

b2�+K�x−z��.

0 5 10
−5

0

5

(a)

x,
y

tt

tt
0 5 10

−5

0

5

(b)

y,
z

0 5 10
−5

0

5

(c)

x,
y

0 5 10
−5

0

5

(d)
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FIG. 1. Complete synchronization and generalized synchroniza-
tion in the coupled Ikeda systems �1� and �2�. �a� Complete syn-
chronization for �1=�2=1, �=5, m1=m2=20, and the square wave
coupling rate ��0, 0�,�2, 40�,�4, 0�,�6, 40�,…�. �b� Generalized syn-
chronization for �1=1, �2=1.2 �or complete synchronization in sys-
tems �10� and �11��. All the other parameters have the same values
as those in Fig. 1�a�. �c� Complete synchronization in the coupled
Ikeda systems �1� and �2� where the coupling rate K�t�=−�
+2m1�cos x�t−�1��. All the other parameters have the same values
as those in Fig. 1�a�. �d� Generalized synchronization in the coupled
Ikeda systems �1� and �2� where the coupling rate K�t�=−�
+2m2�cos x�t−�2�� �or complete synchronization in the systems �10�
and �11��. All the other parameters have the same values as those in
Fig. 1�b�.
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= �
�x�2

�a2x�2
/ �1+x�2

b2�� for generalized synchronization are also
time varying. After a simple computation, we get
� �
�x�

�a1x� / �1+x�
b1����a1+

a1b1

2 =12 for any ��0. Since the
coupling rate K within the intervals �0, 0.2�,�0.4, 0.6�,… is
negative, the condition of r�t��m2� �s�t�� �or r�t�� �s�t���
for all time is not satisfied �1,6,9,11,12�. Therefore we should
verify the satisfaction of condition �24� for complete syn-
chronization and generalized synchronization. It is easy to
verify that �t0


�−�K+c1− � �
�x�1

f�x�1
����dt=−
 and �t0


�−�K

+c1− � �
�x�2

f�x�2
����dt=−
. Hence complete synchronization

�24� for �1=�2 and generalized synchronization �24� for �1
��2 in the coupled Mackey-Glass systems �25� and �26� are
ensured.

The simulation results are plotted in Fig. 2. Figure 2�a�
shows complete synchronization in the coupled nonidentical
Mackey-Glass systems �25� and �26� when a1=a2=2, b1
=b2=10, c1=c2=1, and �1=�2=10. Figure 2�b� shows gen-
eralized synchronization in the coupled nonidentical
Mackey-Glass systems �25� and �26� for a1=a2=2, b1=b2
=10, c1=c2=1, �1=10, and �2=12.

V. CONCLUSION

We have studied synchronization in linearly coupled time-
delayed systems. We first consider the coupled nonidentical
Ikeda systems with a square wave coupling rate. We derive
less restrictive synchronization conditions than those result-
ing from the Krasovskii-Lyapunov theory. Then we general-
ize the above approach to a wide class of nonlinear noniden-
tical time-delayed systems. Even if the coefficients in the
linear time-delayed equation on the synchronization error are
time dependent, we also propose less restrictive synchroni-
zation conditions in an approximative sense. Numerical
simulations of the coupled Ikeda systems and the coupled
Mackey-Glass systems fully verify our main results.
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